60 research outputs found

    Relational parametricity for higher kinds

    Get PDF
    Reynolds’ notion of relational parametricity has been extremely influential and well studied for polymorphic programming languages and type theories based on System F. The extension of relational parametricity to higher kinded polymorphism, which allows quantification over type operators as well as types, has not received as much attention. We present a model of relational parametricity for System Fω, within the impredicative Calculus of Inductive Constructions, and show how it forms an instance of a general class of models defined by Hasegawa. We investigate some of the consequences of our model and show that it supports the definition of inductive types, indexed by an arbitrary kind, and with reasoning principles provided by initiality

    Parameterised notions of computation

    Get PDF
    Moggi’s Computational Monads and Power et al’s equivalent notion of Freyd category have captured a large range of computational effects present in programming languages such as exceptions, side-effects, input/output and continuations. We present generalisations of both constructs, which we call parameterised monads and parameterised Freyd categories, that also capture computational effects with parameters. Examples of such are composable continuations, side-effects where the type of the state varies and input/output where the range of inputs and outputs varies. By also considering monoidal parameterisation, we extend the range of effects to cover separated side-effects and multiple independent streams of I/O. We also present two typed λ-calculi that soundly and completely model our categorical deïŹnitions — with and without monoidal parameterisation — and act as prototypical languages with parameterised effects

    CoqJVM : an executable specification of the Java Virtual Machine using dependent types

    Get PDF
    We describe an executable specification of the Java Virtual Machine (JVM) within the Coq proof assistant. The principal features of the development are that it is executable, meaning that it can be tested against a real JVM to gain confidence in the correctness of the specification; and that it has been written with heavy use of dependent types, this is both to structure the model in a useful way, and to constrain the model to prevent spurious partiality. We describe the structure of the formalisation and the way in which we have used dependent types

    Specifying and verifying heap space allocation with JML and ESC/Java2

    Get PDF
    We examine JML’s support for specifying the heap space allocation of Java programs. In this report we restrict ourselves to specifying and verifying only allocation but not de-allocation. We identify some problems with with JML’s support and suggest alternatives. Also, we describe an implementation of heap space allocation veriïŹcation in ESC/Java2. This implementation has been tested on small examples

    Polynomial Time and Dependent Types

    Full text link
    We combine dependent types with linear type systems that soundly and completely capture polynomial time computation. We explore two systems for capturing polynomial time: one system that disallows construction of iterable data, and one, based on the LFPL system of Martin Hofmann, that controls construction via a payment method. Both of these are extended to full dependent types via Quantitative Type Theory, allowing for arbitrary computation in types alongside guaranteed polynomial time computation in terms. We prove the soundness of the systems using a realisability technique due to Dal Lago and Hofmann. Our long-term goal is to combine the extensional reasoning of type theory with intensional reasoning about the resources intrinsically consumed by programs. This paper is a step along this path, which we hope will lead both to practical systems for reasoning about programs' resource usage, and to theoretical use as a form of synthetic computational complexity theory

    Symbolic and analytic techniques for resource analysis of Java bytecode

    Get PDF
    Recent work in resource analysis has translated the idea of amortised resource analysis to imperative languages using a program logic that allows mixing of assertions about heap shapes, in the tradition of separation logic, and assertions about consumable resources. Separately, polyhedral methods have been used to calculate bounds on numbers of iterations in loop-based programs. We are attempting to combine these ideas to deal with Java programs involving both data structures and loops, focusing on the bytecode level rather than on source code

    Interleaving data and effects

    Get PDF
    The study of programming with and reasoning about inductive datatypes such as lists and trees has benefited from the simple categorical principle of initial algebras. In initial algebra semantics, each inductive datatype is represented by an initial f-algebra for an appropriate functor f. The initial algebra principle then supports the straightforward derivation of definitional principles and proof principles for these datatypes. This technique has been expanded to a whole methodology of structured functional programming, often called origami programming. In this article we show how to extend initial algebra semantics from pure inductive datatypes to inductive datatypes interleaved with computational effects. Inductive datatypes interleaved with effects arise naturally in many computational settings. For example, incrementally reading characters from a file generates a list of characters interleaved with input/output actions, and lazily constructed infinite values can be represented by pure data interleaved with the possibility of non-terminating computation. Straightforward application of initial algebra techniques to effectful datatypes leads either to unsound conclusions if we ignore the possibility of effects, or to unnecessarily complicated reasoning because the pure and effectful concerns must be considered simultaneously. We show how pure and effectful concerns can be separated using the abstraction of initial f-and-m-algebras, where the functor f describes the pure part of a datatype and the monad m describes the interleaved effects. Because initial f-and-m-algebras are the analogue for the effectful setting of initial f-algebras, they support the extension of the standard definitional and proof principles to the effectful setting. Initial f-and-m-algebras are originally due to Filinski and StĂžvring, who studied them in the category Cpo. They were subsequently generalised to arbitrary categories by Atkey, Ghani, Jacobs, and Johann in a FoSSaCS 2012 paper. In this article we aim to introduce the general concept of initial f-and-m-algebras to a general functional programming audience

    A linear algebra approach to linear metatheory

    Get PDF
    Linear typed λ-calculi are more delicate than their simply typed siblings when it comes to metatheoretic results like preservation of typing under renaming and substitution. Tracking the usage of variables in contexts places more constraints on how variables may be renamed or substituted. We present a methodology based on linear algebra over semirings, extending McBride's kits and traversals approach for the metatheory of syntax with binding to linear usage-annotated terms. Our approach is readily formalisable, and we have done so in Agda

    Polynomial time and dependent types

    Get PDF
    We combine dependent types with linear type systems that soundly and completely capture polynomial time computation. We explore two systems for capturing polynomial time: one system that disallows construction of iterable data, and one, based on the LFPL system of Martin Hofmann, that controls construction via a payment method. Both of these are extended to full dependent types via Quantitative Type Theory, allowing for arbitrary computation in types alongside guaranteed polynomial time computation in terms. We prove the soundness of the systems using a realisability technique due to Dal Lago and Hofmann. Our long-term goal is to combine the extensional reasoning of type theory with intensional reasoning about the resources intrinsically consumed by programs. This paper is a step along this path, which we hope will lead both to practical systems for reasoning about programs’ resource usage, and to theoretical use as a form of synthetic computational complexity theory
    • 

    corecore